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A. Progress Attained During This Grant.

'The general features and theoretical framework of the photoacoustic effect

have been reviewed in a comprehensive fashion recently. 2 In the case of

solids, much of the theoretical understanding is based on the work of Rosencwaig

and Gersho which postulated that the absorbing solid behaved as a simple thermal

piston on the coupling gas medium to produce the necessary pressure variation.

In this theory, which is largely one dimensional, the PAS signals produced

depend on a series of thermal and surface parameters of the solid sample, the

solid-gas interface and to a lesser extent of the carrier gas itself. ,

During the past grant period, we have investigated the validity of various

aspects of the theoretical modeling of the photoacoustic effect. In an early

3paper, we were successful in illustrating three dimensional heat flow effects

in the PAS of solids and showed that they are present whenever the thermal

diffusion length of the carrier gas becomes of the same order as the dimensions

of the photoacoustic cell. These effects are specially pronounced at low

chopping frequencies where diffusion lengths are greatest. In subsequent

work, we have been able to establish the limits of applicability of the RG

theory and have shown that even if heat flow occurs three dimensionally, one

dimensional theories remain good approximations provided thermal diffusion
4

lengths in the gas are less than the radius of the sample chamber.

Also, in a recent paper, Cesar and co-workers pointed out that the thermal

contact resistance between two interfacings had not been taken into account

in the various PAS theories (RG, 2 composite piston6 etc.) dealing with condensed

phases and that when this effect is included significant modifications in the

frequency dependence of the PA signal result. We have been able to show

that the above authors made a fundamental error concerning the appropriate
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mechanism for heat transport across a solid/gas interface and that when the

correct treatment is introduced thermal contact resistance produces negligible

corrections to the interpretaticon of PAS signal in most conditions of experi-

mental interest. 7

Generally then, these theoretical developments we have participated in,

as well as earlier work which allowed the identification of coherent noise

sources in PAS sample chambers have served to establish a more solid foundation

on the interpretation of PA phenomena in solids and have lent confidence in

obtaining a more analytical and quantitative description of spectra and signals

obtained through these techniques.

A great deal of the work carried out in PAS of solids, has in fact

concentrated in obtaining static spectroscopic features of materials which could

not be obtained through normal spectroscopic methods. The principal focus in

this type of spectroscopy has been to obtain, for example, absorption bands

energy positions with no attempt at obtaining absolute numnbers in the spectra. 8

The reason for this has been precisely because PAS in solids still suffers

from the lack of theoretical and empirical quantification. The general aim

of our efforts, both theoretical and experimental, has been in the direction of

rectifying this situation.

For example, during the present grant period we have developed simple new

techniques which allow us to measure absolute radiative quantum efficiencies

of fluorescing transitions of ions in insulators through PAS techniques. In

the past, various methods have been used to measure the quantum efficiencies

(QE) of radiative transitions in solids. The QE is the ratio of radiated

to pump power and is of significant technical importance to the design of

lasers. NWasurements of this quantity using conventional means are

empirically difficult because they entail absolute determinations of absorbed
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and radiated radiation levels. PAS provides ais with an alternate way of

measuring QE's through measuring the amount of light which is converted into

low grade heat directly. Mu.rphy and Aamodt9 conducted the first such PAS

measurement in ruby and were able to demonstrate quenching effects with

increasing Cr 3 concentration but did not obtain QE values for ruby.

In a previous grant (DAAG-29-76-GOlOO), we had conducted measurements

of QE in various laser hosts using a black film reference technique to provide

a calibration of the experimental system. According to theory, the final PAS

signal is proportional to npswhere n~ is related to the QE, 0 is the absorption

coefficient and p is the thermal diffusion length of the sample material.

By evaporating a gold black film on the sample surface which provides 100%

light to heat conversion efficiency, i.e. QE = 0, and comparing vector PAS

signals obtained from coated vs. uncoated samples, the absolute value of

the QE of a given transition may be obtained. A number of auxiliary measure-

ments are still required in the extraction procedures such as determination

of a and pswhich scometimes produce com~plications.

In order to circumvent the necessity for auxiliary measurements and enlarge

the applicability of PAS methods to QE determinations, we have developed two

additional ways to conduct these experiments. The first is a technique relevant

to systems such as Nd 3+ in which fluorescence concentration quenching occurs

through ion-ion cross relaxation; 10in a recent publication, we have shown

that the PAS signal in these cases is simply related to the QE at zero

concentration (no quenching) and the fluorescence lifetime of the quenched

state. The second method we have developed comnprises systems which have a

simple decay scheme and moderately long fluorescence lifetimes. 1 1 A system

that falls into this category is ruby, for example. In this method, one
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needs only to measure relative quantities to obtain an absolute value of

the QE and requires no auxiliary experiments. The technique requires simply

a measurement of the phase of the PAS signal as a function of chopping

frequency; in view of our better understanding of PAS theory, it has been

possible to relate the phase difference produced when the system is excited by

two distinct light frequencies directly to the quantum efficiency of the

radiating level. In both of the above measurements conducted on ED-2 Nd3

laser glass and ruby, respectively, we have demonstrated that absolute QE's

may be obtained with accuracies which are comparable or better than the best

measurements made through other means. In this regard, it has been pointed

out recently that our measurement in Nd glass ptioduced a value of QE which

was too small (70% vs, expected 90%) and that this is due to the weakness of
12

the absorption and to surface effects in the glassine host; we shall return

to this point later. Be that as it may, the interpretation in this specific

case rather than the measurement is in question and we do not believe that

there can be any doubt that PAS provides us with a unique tool to measure

these properties.

The quantumn efficiency of a given transition is but one of many properties

of ions in insulators which manifest the results of phonon-ion interactions

in these systems. In order to study these effects in depth, we have recently

built a PAS cavity modelled after that of Pichon et al. 1 3 which allows us-to

cool the sample down to %,20K. In the course of the past year or so, we have

calibrated this new cavity and undertaken a measurement of the temperature

dependence of the QE of the Rline in ruby which has allowed us to identify

the phonon induced non-radiative mechanisms which affect this particular

state. 1 4
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We have also considered the case in which ion-ion interactions lead to

the transfer of energy in insulators and produce spatial diffusion of the

optical excitation.1 Since the PAS signal depends not only on the location

at which the energy is originally deposited but also on the position within

the sample it eventually is converted into low grade heat, the diffusion of

the energy must thus play a role in determining the ultimate nature of the

signal. In all theoretical work on PAS spatial energy migration in the sample

has been assumed to be negligible i.e. that the light absorbed and the heat

generated are produced on the sane location. This is a valid assumption for

many luminescent materials; for ruby, for example, recent laser spectroscopic

measurements have shown no migration over maroscopic distances. There are

however other systems of technical importance in which these effects are

measurable, again, recent optical measurements indicate motion over many

sites in the stoichicuetric materials of the NdP 5 014 class. 16In order to

investigate systems in which transfer occurs using PAS methods, the theory

needs to be modified to include this possibility. We have recently expanded

the PAS theory in this direction and have suggested a way in which the relevant

diffusion of energy parameters may be extracted fran the frequency and phase

dependence of the PAS signal. These results still await experimental

verification.

Finally we have been able to adapt recent developmnents in photothennal

deflection spectroscopy 17to an intra laser cavity configuration and have

demonstrated that one can modulate the laser by inducing an absorption in the

sample and hence misaligning the intra cavity laser beam. 18We have also

demonstrated that this is a very sensitive method to detect both very strong

and very weak absorptions. These results will be published shortly and will

be pursued further under other auspices.
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